Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 137: 103666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492429

RESUMO

Mitochondrial DNA (mtDNA) plays a key role in mitochondrial and cellular functions. mtDNA is maintained by active DNA turnover and base excision repair (BER). In BER, one of the toxic repair intermediates is 5'-deoxyribose phosphate (5'dRp). Human mitochondrial DNA polymerase γ has weak dRp lyase activities, and another known dRp lyase in the nucleus, human DNA polymerase ß, can also localize to mitochondria in certain cell and tissue types. Nonetheless, whether additional proteins have the ability to remove 5'dRp in mitochondria remains unknown. Our prior work on the AP lyase activity of mitochondrial transcription factor A (TFAM) has prompted us to examine its ability to remove 5'dRp residues in vitro. TFAM is the primary DNA-packaging factor in human mitochondria and interacts with mitochondrial DNA extensively. Our data demonstrate that TFAM has the dRp lyase activity with different DNA substrates. Under single-turnover conditions, TFAM removes 5'dRp residues at a rate comparable to that of DNA polymerase (pol) ß, albeit slower than that of pol λ. Among the three proteins examined, pol λ shows the highest single-turnover rates in dRp lyase reactions. The catalytic effect of TFAM is facilitated by lysine residues of TFAM via Schiff base chemistry, as evidenced by the observation of dRp-lysine adducts in mass spectrometry experiments. The catalytic effect of TFAM observed here is analogous to the AP lyase activity of TFAM reported previously. Together, these results suggest a potential role of TFAM in preventing the accumulation of toxic DNA repair intermediates.


Assuntos
DNA Polimerase beta , Liases , Fósforo-Oxigênio Liases , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Liases/metabolismo , Lisina , DNA Polimerase beta/metabolismo , Reparo do DNA , DNA Polimerase gama/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição , Proteínas Mitocondriais/metabolismo
2.
Environ Mol Mutagen ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606505

RESUMO

In response to oxidative damage, base excision repair (BER) enzymes perturb the structural equilibrium of the VEGF promoter between B-form and G4 DNA conformations, resulting in epigenetic-like modifications of gene expression. However, the mechanistic details remain enigmatic, including the activity and coordination of BER enzymes on the damaged G4 promoter. To address this, we investigated the ability of each BER factor to conduct its repair activity on VEGF promoter G4 DNA substrates by employing pre-steady-state kinetics assays and in vitro coupled BER assays. OGG1 was able to initiate BER on double-stranded VEGF promoter G4 DNA substrates. Moreover, pre-steady-state kinetics revealed that compared to B-form DNA, APE1 repair activity on the G4 was decreased ~two-fold and is the result of slower product release as opposed to inefficient strand cleavage. Interestingly, Pol ß performs multiple insertions on G4 substrates via strand displacement DNA synthesis in contrast to a single insertion on B-form DNA. The multiple insertions inhibit ligation of the Pol ß products, and hence BER is not completed on the VEGF G4 promoter substrates through canonical short-patch BER. Instead, repair requires the long-patch BER flap-endonuclease activity of FEN1 in response to the multiple insertions by Pol ß prior to ligation. Because the BER proteins and their repair activities are a key part of the VEGF transcriptional enhancement in response to oxidative DNA damage of the G4 VEGF promoter, the new insights reported here on BER activity in the context of this promoter are relevant toward understanding the mechanism of transcriptional regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...